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ABSTRACT

The flow of two immiscible electrically conducting Oldroyd fluids through a straight
rectangular tube has been studied. The flow has been considered in presence of
transverse uniform magnetic field and under the influence of time —varying pressure
gradient. Using integral transform technique, the exact solutions for the velocities of two
immiscible fluids have been obtained. Finally a few particular cases of pressure gradient

have been discussed.
1.INTRODUCTION

There are fluids, which exhibit the elasticity property of solids and viscosity property of
fluids, which are adequate in nature, and relevant fields of fluid dynamics. These types of
fluids are called non-Newtonian fluids or visco-elastic fluids. The present authors have
consulted freely some of the books'” in this reference. The flow of visco-elastic fluid
between two parallel plates under uniform, exponential or periodic pressure gradient has
been investigated by Das® and Pal and Sengupta®. Drake!® studied the flow of an
incompressible viscous fluid along a rectangular channel due to a periodic pressure
gradient. Panja and Sengupta!! investigated the unsteady hydrodynamic flow of two
immiscible visco-elastic fluids between two inclined parallel plates. Sengupta and
Chakraborty!? studied the MHD flow of two immiscible visco-elastic Rivlin-Ericksen fluids
through a non-conducting channel. The problem of unsteady flow of two immiscible visco-
elastic fluids under a certain pressure gradient between two fixed plates was studied by
Kapur and Shukla®3. Sengupta and Raymahapatra’* investigated the flow of two immiscible
visco-elastic Maxwell fluids with transient pressure gradient through a rectangular tube.
Chakraborty and Senguptal® studied the hydromagnetic flow of two immiscible visco-

elastic Walter conducting liquids between two inclined parallel plates. In this paper the

173 International Journal of Engineering, Science and Mathematics
http://www.ijesm.co.in, Email: ijesmj@gmail.com



http://www.ijesm.co.in/
http://www.ijesm.co.in/

ISSN: 2320-0294 0 Impact Factor: 6.765

authors have investigated the unsteady MHD flow of two immiscible Oldroyd fluids through

a straight rectangular tube under various pressure gradients.

2. MATHEMATICAL FORMULATION
For the slow motion the equation of state relating to the stress tensor tikand the rate of
strain tensor eix for visco-elastic Oldroyd type are of the form:
Ty = — PGy + T

o, , 0
(1"‘/115)% =2u+ a)eik
1
€ik = E(Vi,k +Vk,i)

where T'ikis the part of the stress tensor associated with the change of shape of the material
element, p is the isotropic pressure of arbitrary type , gik the metric tensor, u(>0) the co-
efficient of viscosity and vithe velocity vector, A1 and p1 (A1, u1>0) are the stress relaxation
time parameter and rate of strain retardation time, respectively. The metric tensor gix in

Cartesian co-ordinates become gik=0ik. Now from above:

0 0
Ty — S S 7
T = —%t 2., =248, (say)andv = =y —%t
& ot & ot
where v = Tl is the kinematical co-efficient of viscosity.
Yo,

Fundamental Navier Stokes equation of motion is:

8—q:—iﬁp+v*V2€1+lE

a p

. o\og 0 = o\, 8=
ell+A,—|—=—-1+4 — |V 1 — |V 1 — |F (1
IE(—F latjat (+ 15’[) p‘*‘V( +ﬂ16tj q+( +ﬂ-16tj (1)

where ( is the velocity vector. This is the Navier Stokes equation of motion in case of
Oldroyd fluid.

With reference to rectangular Cartesian co-ordinate system we consider the boundary of
the walls of the channel as x =+aand y = £b. The z-axis is chosen on the surface of the
fluids and towards the direction of motion of both fluids, the x-axis perpendicular to the

interface drawn into the upper fluid and the y-axis in the plane of the interface.
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Let p,, A, 4, 14, 0;,v; (1 =12) be the density, relaxation time, retardation time, co-efficient
of viscosity, electrical conductivity and kinematical co-efficient of viscosity of the upper and
lower fluids respectively each occupying height ‘a’. We also suppose that two media have
approximately the same permeability pe throughout and thus the same magnetic field Ho
is interacting to both the conducting fluids, the velocities of the lower and upper fluids are
respectively wi(x,y,t) [i=1,2], in the z-direction.

The equations of motion of Oldroyd fluids in the presence of a transverse magnetic field in

view of the above assumptions become:

2 2 2
(14.]4 g)%=—i(l+/li gj@+vi(l+ﬂi gj 0 V;li +a V;/i _O-iBO [1+ﬂi gjwl(z)
a)at p ot ) oz aloxd oy 0, ot

H
Pi

where v, = are the kinematical co-efficients of viscosity of the upper and lower fluids

and Bo=LleHo is the magnetic induction vector. [i=1,2]
3. SOLUTION OF THE PROBLEM

We introduce firstly the non-dimensional quantities:

2
' pa W \Nia ,ﬂf,’ — ﬂﬁvi ,U' — /’;‘z/l [|=1,2]

2 VM

!

X =

!

’y =X’Z’=
a

X
a -2
a Vi Pi Vi a

Now dropping the primes from equation (2) we have:

2 2 2
ﬂiavgli+<1+Mi2/1i)%+Mizwi=—1+/1ig P, 1+ﬂiﬁ av;/i+av;/i - (3)
ot ot ot )oz ot \ ox oy
lof Boza2 . . _
where M, = | —/——— [i=1,2] is the Hartmann numbers corresponding to the upper and

i
lower fluids, respectively.
Initially the fluids are at rest and the flow takes place under the time-varying pressure

gradient. The initial and boundary conditions of the upper fluid are:

w; (X,y,0) =0 ...(4)
w, 1y t)=0; -1 <y<I,1t)0 ...(6.1)
OX
w, (x,£1,1); —1<x<1, t)O ...(6.1)
ow,
oy
175 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com



http://www.ijesm.co.in/

ISSN: 2320-0294 0 Impact Factor: 6.765

The initial and boundary conditions of the lower fluid are:

w,(X,y,0)=0 .(7)
w,(-Ly,t)=0; -1 <y<It)0 ..(8.1)
W, =0: x=0 ...(8.2)
oxX
w, (Xt t); —1<x <1, t)0 ..(9.1)
aW2
=0; y=0 ...(9.2)
oy
where | = 9
a

The method of integral transform is used to find out the solution and we define the finite

Fourier cosine transform as:

w,(n,y,t) = I:wl(x, y,t)cos(p, x)dx ...(10)

w, (n,m,t) = J‘OI w, (n, y,t)cos(p, y)dy (1)
where p. = (2n+1)(z/2), p, = (2m+1)(x/2l)

The inverse finite cosine transform defined in equations (10) and (11) can be obtained as:

w, (X, y,t) =2 w,(n, y,t)cos(p,X) .(12)
n=0
w, (n,y,t) =23 w, (n,m,t)cos(p,y) (13)
m=0
Taking finite Fourier cosine transform to boundary conditions (6.1) and (6.2) we obtain:
w,(n,I,t)=0 ..(14.1)
m,(n.y.1) _, .(14.2)
oy

Applying transforms (10) and (11) to initial condition (4) we have:
w, (n,m,0) =0 ..(15)

Using equations (10) and (11) to the equation of motion (3) and using (4), (5.1), (5.2),

(6.1), (6.2), (14.1) and (14.2) we get:

200 * __q\ym+n
aatv? +4 a‘gg o, =50 2 5 Z(t) ~(16)
Lhom v p.7] (M," +p,” +p,) op
where ‘§1=Z]'+M1 A+ Py + Py = A :E:_F(t)
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where F(t) is an arbitrary function of time.

Now we use the Laplace transform defined by :
W,(s) = ["w.edt, F(s)= [ F(t)edt

From equation (16) and by (15) we get:

SAW, () + ESW, () + W, (s) = LF:Z(S) (17)

We solve this equation by Laplace inversion and we use convolution integral to get:

w, = 2D j {F(t ue % S|n(\/4771—§12 %ﬂdu -(18)

P P4, — &
Now by (12) and (13) from (18) we have the velocity of the upper fluid as:

wixyn=o3 > J{F(t we %usm[\/éml—éf %ﬂducos(pnx)cos(pmw

n=0m=0 pm pnﬂ’l\/4771_§1
for 0<x<1 ..(19)

Similarly under the boundary conditions (8.1), (8.2) and (9.1), (9.2) using the above

transforms we obtain the velocity of the lower fluid as:

~ (1)m+n { gzu ( )}
w, (X, y,t) = F(t—u)e 2 sin y4n,—&° = | ducos(p,x)cos(p, y)
22 vl !

for -1<x<0 ...(20)

(M, +p,” +p,)
Ay

where §2——[1+M A, +,Uz(pm + P, )] =

4.FLOW UNDER VARIOUS PRESSURE GRADIENT
CASE I: Flow under constant pressure gradient
Let F(t)=Fo (a constant)

The velocities of the upper and lower fluids from (19 and (20) reduce as:

gmzo(pg:;:m{ ?{\/ﬁxsm%m &’ }+cos{w/4nl—§f;ﬂcos(pnx)cos(pmy)

for 0<x<1 ..(21.1)

W, _?iimmﬁ){le?{gzxsin,mnz —522 ;}-}-COS{\/[‘J]Z —522 ;}] cos(p,x)cos(p,,y)
4, =&,

)=

for -1<x<0 ..(21.2)
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CASE II: Flow under impulsive pressure gradient

Let F(t)=F1.0(t) where F1 is a constant and 9(t) is the unit impulse function defined as:
o(t)=0,t=0and d(t) =1,t=0

The velocities of the upper and lower fluids from (19 and (20) reduce as:

=83y VR {e?{sin\/%—éz %Hcos(pnx)cos(pmy)

I n=0m=0 pm pnﬂ'l\/4771 _glz |~

for 0<x<1 ..(22.1)

w, =85y (VTR (e?{sin\/zmz—«:i %Hcos(pnx)cos(pmy)

| n=0 m=0 pm pnﬂ'z\/4772 _§22 L

for -1<x<0 ..(22.2)

CASE lll: Flow under transient pressure gradient
Let F(t)=F.e! (w > 0) where F; is a constant

The velocities of the upper and lower fluids from (19 and (20) reduce as:

5

-(Z-o)t -20 . t

1-e ? {%xsm,mm—ffi}
dm -4

16&S ()™Fe
_ ZZ 2

W= cos(p,X)cos(p,,y)
' l n=0 m=0 pm pnﬂ'l (a)2 - 26051 + 4771) 5 t
+cos{,/4771—§1 5}
for 0<x<1 ..(23.1)

5
-(Z-o)t f -20 . 2 t
1-e 2 {22 ——_xsinydy, - & —
16 0 © (_1)m+nFe—wt { 4 _ 2 X 772 4:2 2}
W= s MR c0s(p, ) cos(p, )
I n=0 m=0 pm pnj’Z ((0 _20)§2+4772) 2 t
+cos{,/4nz—§2 5}
for -1<x<0 ..(23.2)
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CASE IV: Flow under periodic pressure gradient
Let F(t)= Re (Fse™™) where Fs is a constant

The velocities of the upper and lower fluids from (19 and (20) reduce as:

(N? +7,)(& sinNt —cosNt) + 2N 2 /4n, - &°
Rlsl

_at

4 & -D)™"F, e, ] . )
W, =— - P, cos(N + =)t + & sin(N + —)t} cos(p,x)cos(p,,Y)
_at
e ? Q ; Q
———{Q, cos(N — =)t =& sin(N — =)t
g5, Qs cost =t =G sin(N =210
for 0<x<1 ..(24.1)

Po=2N—\f4n, &7 and Q =2N +f4n, &/
R1:N2+771_NV4771_(§12 and 81:N2+771+N\‘4771_512

(N2 +7,)(&, sinNt—cosNt)+ 2N ? /4n, — &£,
RZSZ

&t

_1\m+n 2
D -E qpcostN g sinN -4 |oos(p0c0s(p,)

=0m=0p, pnﬂz\/4772_§22 2

&t

=

® {Q coslN -y, sin(N - )

25 2

for -1<x<0 ..(24.2)

P,=2N—45,-¢&,° and Q2=2N+m
R2=N2+772_N\/4772_§22 and 82:N2+'72+Nm
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5. DISCUSSIONS

From the velocities of the upper and lower fluids obtained in equations (19) and (20) we
can easily find out the corresponding velocities in case of two immiscible Maxwell fluids

just making both p1 and p» zero, respectively. Then only & and &, will change in equations

(19) and (20). Similarly, making A1 and A, both zero in equations (19) and (20) we can obtain
the corresponding velocities of two immiscible visco-elastic Rivlin-Ericksen fluids. Hence,
just by means of the above changes we can also determine the velocities of two immiscible
Maxwell fluids and Rivlin-Ericksen fluids under constant, impulsive, transient and periodic
pressure gradient.
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