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ABSTRACT 

The flow of two immiscible electrically conducting Oldroyd fluids through a straight 

rectangular tube has been studied. The flow has been considered in presence of 

transverse uniform magnetic field and under the influence of time –varying pressure 

gradient. Using integral transform technique, the exact solutions for the velocities of two 

immiscible fluids have been obtained. Finally a few particular cases of pressure gradient 

have been discussed.   

1.INTRODUCTION 

There are fluids, which exhibit the elasticity property of solids and viscosity property of 

fluids, which are adequate in nature, and relevant fields of fluid dynamics. These types of 

fluids are called non-Newtonian fluids or visco-elastic fluids. The present authors have 

consulted freely some of the books1-7 in this reference. The flow of visco-elastic fluid 

between two parallel plates under uniform, exponential or periodic pressure gradient has 

been investigated by Das8 and Pal and Sengupta9. Drake10 studied the flow of an 

incompressible viscous fluid along a rectangular channel due to a periodic pressure 

gradient. Panja and Sengupta11 investigated the unsteady hydrodynamic flow of two 

immiscible visco-elastic fluids between two inclined parallel plates. Sengupta and 

Chakraborty12 studied the MHD flow of two immiscible visco-elastic Rivlin-Ericksen fluids 

through a non-conducting channel. The problem of unsteady flow of two immiscible visco-

elastic fluids under a certain pressure gradient between two fixed plates was studied by 

Kapur and Shukla13. Sengupta and Raymahapatra14 investigated the flow of two immiscible 

visco-elastic Maxwell fluids with transient pressure gradient through a rectangular tube. 

Chakraborty and Sengupta15 studied the hydromagnetic flow of two immiscible visco-

elastic Walter conducting liquids between two inclined parallel plates. In this paper the 
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authors have investigated the unsteady MHD flow of two immiscible Oldroyd fluids through 

a straight rectangular tube under various pressure gradients.  

 

2. MATHEMATICAL FORMULATION 

For the slow motion the equation of state relating to the stress tensor ik and the rate of  

strain tensor eik for visco-elastic Oldroyd type are of the form: 
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where ik is the part of the stress tensor associated with the change of shape of the material 

element, p is the isotropic pressure of arbitrary type , gik the metric tensor, (>0) the co-

efficient of viscosity and vi the velocity vector, 1 and 1 (1, 1>0) are the stress relaxation 

time parameter and rate of strain retardation time, respectively. The metric tensor gik in 

Cartesian co-ordinates become gik=ik. Now from above: 
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where 



   is the kinematical co-efficient  of viscosity. 

Fundamental Navier Stokes equation of motion is: 

...(1)                              1111 ..

1

1

2

111

2*

F
t

q
t

p
tt

q

t
ei

Fqp
t

q








































































where q


 is the velocity vector. This is the Navier Stokes equation of motion in case of 

Oldroyd fluid. 

With reference to rectangular Cartesian co-ordinate system we consider the boundary of 

the walls of the channel as b.y and  ax  The z-axis is chosen on the surface of the 

fluids and towards the direction of motion of both fluids, the x-axis perpendicular to the 

interface drawn into the upper fluid and the y-axis in the plane of the interface. 
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Let )2,1(,,,,, iiiiiii   be the density, relaxation time, retardation time, co-efficient 

of viscosity, electrical conductivity and kinematical co-efficient of viscosity of the upper and 

lower fluids respectively each occupying height ‘a’. We  also suppose that two media have 

approximately the same permeability e throughout and thus the same magnetic field H0 

is interacting to both the conducting fluids, the velocities of the lower and upper fluids are 

respectively wi(x,y,t) [i=1,2], in the z-direction. 

The equations of motion of Oldroyd fluids in the presence of a transverse magnetic field in 

view of the above assumptions become: 
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where 
i

i
i




   are the kinematical co-efficients of viscosity of the upper and lower fluids 

and B0=eH0 is the magnetic induction vector. [i=1,2] 

3. SOLUTION OF THE PROBLEM 

We introduce firstly the non-dimensional quantities: 
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Now dropping the primes from equation (2) we have: 
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where 
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M
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0   [i=1,2] is the Hartmann numbers corresponding to the upper and 

lower fluids, respectively. 

Initially the fluids are at rest and the flow takes place under the time-varying pressure 

gradient. The initial and boundary conditions of the upper fluid are: 
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The initial and boundary conditions of the lower fluid are:  
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The method of integral transform is used to find out the solution and we define the finite 

Fourier cosine transform as: 
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The inverse finite cosine transform defined in equations (10) and (11) can be obtained as: 
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Taking finite Fourier cosine transform to boundary conditions (6.1) and (6.2) we obtain: 
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Using equations (10) and (11) to the equation of motion (3) and using (4), (5.1), (5.2), 
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where F(t) is an arbitrary function of time. 

Now we use the Laplace transform defined by : 
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We solve this equation by Laplace inversion and we use convolution integral to get: 
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Now by (12) and (13) from (18) we have the velocity of the upper fluid as: 
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                                                          for    0  x  1                                                    …(19) 

Similarly under the boundary conditions (8.1), (8.2) and (9.1), (9.2) using the above 

transforms we obtain the velocity of the lower fluid as: 
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4.FLOW UNDER VARIOUS PRESSURE GRADIENT 

CASE I: Flow under constant pressure gradient 

Let F(t)=F0 (a constant) 

The velocities of the upper and lower fluids from (19 and (20) reduce as: 
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                                                               for  -1  x  0      …(21.2) 
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CASE II: Flow under impulsive pressure gradient 

Let F(t)=F1.(t) where F1 is a constant and (t) is the unit impulse function defined as: 

           (t) = 0, t  0 and (t) =1, t = 0 

The velocities of the upper and lower fluids from (19 and (20) reduce as: 
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CASE III: Flow under transient pressure gradient 

Let F(t)=F2e-t ( > 0) where F2 is a constant 

The velocities of the upper and lower fluids from (19 and (20) reduce as: 
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CASE IV: Flow under periodic pressure gradient 

Let F(t)= Re (F3eint) where F3 is a constant 

The velocities of the upper and lower fluids from (19 and (20) reduce as: 
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for    0  x  1                                               …(24.1) 
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                                                           for  -1  x  0                                                …(24.2) 
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5. DISCUSSIONS 

From the velocities of the upper and lower fluids obtained in equations (19) and (20) we 

can easily find out the corresponding velocities in case of two immiscible Maxwell fluids 

just making both 1 and 2 zero, respectively. Then only 21  and  will change in equations 

(19) and (20). Similarly, making 1 and 2 both zero in equations (19) and (20) we can obtain 

the corresponding velocities of two immiscible visco-elastic Rivlin-Ericksen fluids. Hence, 

just by means of the above changes we can also determine the velocities of two immiscible 

Maxwell fluids and Rivlin-Ericksen fluids under constant, impulsive, transient and periodic 

pressure gradient.       
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